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ABSTRACT 

In a multi-ethnic and diverse country like Nigeria, which has inherent health system challenges, 

there is a need for timely and accurate mortality forecasts for effective resource allocation, 

and policy and social program design. This research, therefore, applies the Lee-Carter model 

to Nigerian mortality data which is a popular mortality prediction technique. The Model is 

modified due to Nigeria's structure comprising both rural and urban areas with different age 

geographic mortality rates. The research population consists of historical and projected 

mortality data for Nigeria from 12/31/1950 to 12/31/2100, obtained from the United Nations 

(UN) data bank. The final dataset was split into two subsets: the training set (from 1952 to 

2023) and the validation set (from 2024 to 2100). This split allowed for accurate performance 

evaluation of the models on unseen data. The study predicts mortality trends in Nigeria using 

the Lee-Carter model and its variations, such as ARIMA, SARIMAX, and Gradient Boosting 

Regressor (GBR). The Lee-Carter Model with Gradient Boosting Regressor (GBR) model 

significantly outperformed the other two models with an exceptionally low MSE of 4.25e-06. 
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1. Introduction 

Mortality forecasting is an important component of demographic research and informs public 

health planning and socio-economic development. Accurate future mortality projections are 

necessary for governments, health organizations, and regulators to develop effective healthcare 

policies or optimize resource allocation (for example, pensions and insurance), and the costs 

of these programs must remain sustainable. Knowledge of trends in mortality enables decision-

makers to anticipate future population structures and necessary public health priorities should 

a potentially massive global outbreak occur. Precision mortality forecasts are vital to a 

functioning public health system, leading to increased preparedness and more efficient 

interventions (Lee & Carter, 1992). 

 Nigeria not only boasts of the highest population in Africa but also has the highest number of 

deaths from traffic accidents on the continent (World Health Organization, 2023). The country 

also has distinctive public health and mortality challenges, coupled with a vastly heterogeneous 

population experiencing unequal healthcare access, marked by socio-economic inequalities, as 

well as high rates of infectious diseases (National Bureau of Statistics, 2022).  These conditions 

mailto:lajijola@unilag.edu.ng


Ajijola, Patrick & Prosper: fitting and forecasting mortality trend in Nigeria: an application of 
the Lee-Carter model 

156 
 

create the complexity of modeling and predicting mortality accurately in Nigeria. 

Understanding mortality trends in Nigeria is crucial for health, economic, and broader social 

planning. Mortality projections play a vital role in public health strategies to prevent avoidable 

deaths, corresponding with and generating changes that can affect overall life expectancy 

(Cairns, Blake, & Dowd, 2006). 

For Nigeria, mortality rates are more than statistics, forecasting mortality accurately has 

become necessary, and using advanced techniques capable of covering the multiple dimensions 

and uncertainties surrounding mortality such as high burdens of disease, and disparities in 

access to healthcare across Nigeria is not negotiable. This served as a motivation to innovate 

new methodologies to enhance the fitting and forecasting of mortality rates in Nigeria. 

In Nigeria, mortality rates are more than statistics; they can be seen as a matter of life and 

death, or worse, of a healthy future. By contrast, while it is exactly in critical such cases for 

forecasting accurate mortality that Nigeria would become necessary to use advanced 

techniques capable of covering the multiple dimensions and changing nature, the same as what 

happens in everyday life. Given the diversity of communities, high burdens of disease, and 

disparities in access to care across Nigeria, too many independent variables unique to 

individual settings drive mortality trends for more simple models (National Bureau of 

Statistics, 2022). 

The Lee-Carter model is one of the most popular methods in modeling and forecasting 

mortality data. It has become popular because it can replicate long-term mortality trends from 

historical data by decomposing the observed age-specific patterns and levels of mortality over 

time. The Lee-Carter model is widely used due to its simplicity and accuracy, particularly in 

developed countries where reliable mortality data is available and mortality trends are 

relatively consistent (Lee & Carter, 1992). However, the utilization of the Lee -Carter model 

in forecasting mortality in a developing country such as Nigeria where data is limited has not 

been fully explored. This study aims to fill the existing research gap by utilizing the Lee-Carter 

model to fit and forecast mortality rates in Nigeria. Through the modification of the LCM, the 

study seeks to enhance the forecasting ability of the Lee-Carter model. Better forecasts help 

policymakers make better decisions, plan more effectively, and ultimately save lives (Lee & 

Carter, 1992; Cairns, Blake, & Dowd, 2006). 

2. Literature Review 

To provide a better understanding of forecasting mortality, this study adopts the 

Epidemiological Transition Theory, Compression of Morbidity Theory, and Stochastic Theory 

of Mortality. The epidemiological transition theory represents one of the most widely used 

theories in the forecast of mortality rates. This model, introduced by Abdel Omran in 1971, 

explains the evolution of the disease pattern and the mortality rate as societies develop and 

modernize.  

The Compression of Morbidity Theory describes that while the life expectancy of a population 

continues to rise, the end-of-life period during which people may be expected to be unhealthy 
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gets shortened. More specifically, the stagnation of morbidity (or serious diseases) becomes 

prolonged so that a person doesn’t become unwell far towards the last days of his or her life. 

Similarly, the Compression of Morbidity Theory includes provisions that improvements in the 

population, whether from healthcare, risk factors, or preventive measures, may increase the 

healthy life span of individuals and eventually reduce the burden of chronic diseases and 

disability in old age.  

The Stochastic Theory of mortality perceives rates of deaths as being stochastic and affected 

by many non-statistical variables like climate change, outbreaks, or self-care practices of 

individuals. Rather than deterministic models that postulate a specific line of change in the 

mortality rates, stochastic models relax these assumptions and introduce uncertainties about 

future outcomes. Globally, studies on mortality forecasting have been devoted to using the Lee-

Carter model within and across countries. In their 1992 paper, Lee and Carter figuratively 

describe explaining the mortality component of the demographic disease models regarding the 

US population during 1933–1987, thereby illustrating the capability of the model for effective 

forecasting of mortality for different cohorts over different ages. The major uniqueness of this 

study was that it fully delinked the age-specific mortality from the time-related trends, which 

was a safety turn for other uses of the model. 

Booth et al. (2002) expanded the use of the Lee-Carter model to Australian, Canadian, and 

Swedish mortality. The results showed the robustness of the model for different demographic 

regimes but indicated simultaneously that the calendarization of the model is necessary in 

parallel to express the peculiar regional and cultural courses of mortality. The study confirmed 

that the Lee-Carter model was applicable in the long-term mortality forecasts for countries of 

different socio-economic levels of development and public health infrastructure. Further 

studies, among others, Girosi and King (2008) discussed the application of the Lee-Carter 

model in projecting mortality in low- and middle-income countries. They modified the model 

to take into consideration more volatile mortality patterns witnessed in countries beset by 

frequent epidemics, conflicts, or economic instability. With modification, the Lee-Carter model 

could be applied in countries with rather less reliable or inconsistent mortality data. 

Liu and Yu (2011) set up a backtesting methodology to evaluate the prediction performance of 

the Lee-Carter model. They propose to use the Kolmogorov-Smirnov test to assess how close 

the percentile histogram resembles uniform distribution, which can complement the assessment 

of probabilistic prediction. They also address two issues with implementing the Lee-Carter 

model: robustness and drift uncertainty. Quantile regression (QR) were proposed for robust 

parameter estimation of the model for time-varying index 𝑘𝑡. They use the bootstrap method 

to incorporate the drift uncertainty. Finally, they illustrate the proposed methods through 

examining the model performance on our simulated data as well as actual mortality data from 

different countries. The findings of the study suggest that the QR method improves the 

prediction performance of the Lee-Carter model and there exists evidence for trend changes in 

male mortality in the last century. 

Melnikov and Romaniuk, (2006) compares the performance of three mortality models in the 

context of optimal pricing and hedging of unit-linked life insurance contracts. Two of the 
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models are the classical parametric results of Gompertz and Makeham, the third is the recently 

developed method of Lee and Carter (1992) for fitting mortality and forecasting it as a 

stochastic process. First, quantile hedging techniques of Föllmer and Leukert (1999) are 

applied to price a unit-linked contract with payoff conditioned on the client’s survival to the 

contract’s maturity. Next, the paper analyzes the implications of the three mortality models on 

risk management possibilities for the insurance firm based on numerical illustrations with the 

Toronto Stock Exchange/Standard and Poor financial index and mortality data for the USA, 

Sweden and Japan. The strongest differences between the models are observed in Japan, where 

the lowest mortality for the next two decades is expected. The general mortality decline 

patterns, rectangularization of the survival curve and deceleration of mortality at older ages, 

are well pronounced in the results for all three countries. 

Akinkugbe et al. (2017) used the Lee-Carter model to project mortality rates into the future for 

arguably Nigeria's two largest and most diverse cities, Lagos and Kano. Using historical 

mortality data from the National Population Commission and the World Health Organization, 

this chapter uses the Lee-Carter model to project mortality rates for these urban centers in the 

near and distant future. The results reflect that, in Nigeria, the urban mortality rates were 

falling, basically due to an improvement in access to health care and the reduction of infant and 

maternal mortality. 

Shelleng, Sule, Kajuru and Kabiru, (2022) used Nigeria mortality data from 2009 to 2020 to 

compares and contrasts how well the Lee-Carter and ARCH models performed. Singular value 

decomposition (SVD) method, Langrage multiplier test, and autoregressive conditional 

heteroskedasticity (ARCH) effects were examined. Five (5) different ARIMA and ARCH 

models were fitted together with their criteria, i.e., AIC and BIC in order to determine the best 

model for Nigeria mortality data. ARIMA (0,1,0) had the lowest AIC and BIC values, and was 

determined to be the best ARIMA model. The mortality index is then modelled using ARIMA 

(0,1,0) and plugged back into the Lee-Carter model to predict the future mortality rate. Also 

ARCH (1) turned out to be the best ARCH model among other candidate models. The 

performance of Lee-Carter model and ARCH model was compared using error measures. 

Results obtained revealed that the ARCH model had the minimum RMSE and MAPE when 

compared with the Lee-carter model, therefore it was concluded that the ARCH model 

performs better than the Lee-Carter model on Nigeria mortality data. 

3. Material and Methods 

This section outlines the methodology employed in analyzing and predicting mortality trends 

in Nigeria using the Lee-Carter model and its variations, such as ARIMA, SARIMAX, and 

Gradient Boosting Regressor (GBR).  

3.1. Population of the Study, Sample Size and Sampling Technique 

The research population consists of historical and projected mortality data for Nigeria from 

12/31/1950 to 12/31/2100, obtained from the United Nations (UN) data bank. This data 

includes demographic information across various age groups, gender categories, and regions 
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within Nigeria. The population provides comprehensive information to develop reliable 

mortality forecasts (United Nations, 2019). The extracted data was prepared by cleaning and 

organizing it into a format suitable for statistical analysis and model application. The final 

dataset was split into two subsets: the training set (from 1952 to 2023) and the validation set 

(from 2024 to 2100). This split allowed for accurate performance evaluation of the models on 

unseen data. 

Given the extensive temporal scope of the data, there is no direct need for sampling in the 

traditional sense, as the entire dataset represents the population of interest. This is referred to 

as complete enumeration or a population study, where every available data point is utilized to 

ensure comprehensive analysis. By leveraging all available data, this study seeks to maximize 

the accuracy of the mortality forecasts. 

However, within the data, stratification occurs based on age groups, gender, and possibly 

geographical or socioeconomic factors. Stratified sampling is thus applied to ensure that 

mortality rates are analyzed across different segments of the population, particularly to observe 

differences in mortality trends between different cohorts. The primary stratification variables 

include: 

• Age Groups: Mortality data is stratified across various age cohorts to capture the 

differing mortality rates for each group, as mortality patterns tend to vary significantly 

by age. 

• Gender: Data is segmented by gender to analyze mortality differences between males 

and females, which is essential in identifying gender-specific trends (Booth et al., 

2002). 

• Time Periods: The data is also stratified into smaller time intervals, such as decades, to 

understand changes in mortality trends over time. 

The decision to use the entire dataset ensures that the analysis captures both short-term and 

long-term mortality trends. Given the diverse range of years and demographic variables 

included, using the entire data pool avoids potential biases that might arise from excluding 

certain time periods or population groups. Additionally, this approach allows for accurate 

calibration of the predictive models, especially for the Lee-Carter model and its variations 

(ARIMA, SARIMAX, GBR), as larger datasets typically yield more reliable predictions. 

3.2. Model Specification 

Lee Carter Model 

It has now been well accepted that mortality needs to be projected to allow future mortality 

improvement to be taken into account in the evaluation of mortality contingent products. It is 

also important to acknowledge that mortality trends have shown a great deal of uncertainty in 

the past (Pitacco, 2004). To incorporate randomness into mortality dynamics, Lee and Carter 

introduced a simple yet powerful statistical model for fitting and projecting mortality. Under 

the Lee-Carter framework, the log of age-specific central mortality rates are described as 
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𝑙𝑜𝑔𝑚𝑥𝑡  =  𝑎𝑥  +  𝑏𝑥 𝑘𝑡 + 𝜖𝑥𝑡 ,     (1) 

where 𝑥 =  1, 2,3, … , 𝑛 represent ages and 𝑡 =  1,2, … , 𝑡0 represent years. Hence, through the 

Lee-Carter decomposition, the mortality improvement over time can be summarized with two 

age factors 𝑎𝑥 and 𝑏𝑥, and one time-varying index 𝑘𝑡. Here 𝑘𝑡 represents the time series of the 

general level of mortality, while 𝑎𝑥 describes the age profile averaged over time, and 𝑏𝑥 

determines how much, at each age, the mortality rate responds to the changes in 𝑘𝑡. 

After the Lee-Carter model is fit to a selected data set, 𝑎𝑥’s and 𝑏𝑥’s are treated as constants 

and the values of𝑘𝑡 are modeled by a time series. In the original paper of Lee and Carter (1992), 

it is suggested that an autoregressive integrated moving average, specifically, ARIMA (0,1,0), 

is the most appropriate model for 𝑘𝑡, even though in some cases other ARIMA models might 

be preferable. The ARIMA (0,1,0) is equivalent to a random walk with drift and can be written 

as follows: 

 𝑘𝑡  =  𝑘𝑡−1  +  𝑐1  + 𝜉𝑡,      (2) 

where 𝜉𝑡 is 𝑁(0, 𝜎2), independently and identically distributed. The drift term of this random 

walk, 𝑐1, and its standard deviation, 𝜎, are estimated from 𝑘1, 𝑘2, … 𝑘𝑡0
. Forecasts of future 

values of 𝑘𝑡 (𝑘𝑡0+1, 𝑘𝑡0+2, … ) can then be recursively generated using formula (2). More 

specifically, to forecast the time-varying index at time 𝑡0 + 𝑛  given the data available up to𝑡0, 

the following equation is used: 

𝑘𝑡0+𝑛 = 𝑘𝑡0
+ 𝑛 ∙ 𝑐1 + ∑ 𝜉𝑗

𝑛

𝑗=1

                                                 (3) 

The following algorithm were follow in building the model 

1. Log Mortality Transformation: The death rates were converted into their logarithmic 

form to stabilize variance. 

2. SVD Decomposition: Using singular value decomposition (SVD), the Lee-Carter 

model components 𝑎𝑥, 𝑏𝑥, and 𝑘𝑡 were estimated, where ax is the mean log mortality, 

𝑏𝑥 represents the age-related component, and 𝑘𝑡 captures the time-dependent mortality 

trend. 

3. Time Series Forecasting: The time-dependent component was forecasted using an 

ARIMA (1,1,0) model. This configuration was chosen based on the underlying 

structure of the data. 

Auto Regressive (AR) Models.  

An AR(𝑝) (Auto Regressive of order 𝑝) model is a discrete time linear equations with noise, 

of the form 

𝑋𝑡 = 𝛼1𝑋𝑡−1 + ⋯ + 𝛼𝑝𝑋𝑡−𝑝 + 𝜀𝑡.     (4) 
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Here 𝑝 is the order,𝛼1, 𝛼2, … 𝛼𝑝are the parameters or coefficients (real numbers), 𝜀𝑡 is an error 

term, usually a white noise with intensity 𝜎2. The model is considered either on integers 𝑡 ∈ ℤ, 

thus without initial conditions, or on the non-negative integers 𝑡 ∈ ℕ. In this case, the relation 

above starts from 𝑡 =  𝑝 and some initial condition 𝑋0, … , 𝑋𝑝−1 must be specified. The 

simplest case of an AR(1) model is 

𝑋𝑡 = 𝛼1𝑋𝑡−1 + 𝜀𝑡        (5) 

Time Lag Operator.  

Let 𝑆 be the space of all sequences (𝑥𝑡)𝑡𝜖ℤ of real numbers. Let us define an operator 𝐿: 𝑆 → 𝑆, 

a map which transform sequences in sequences. It is defined as 

𝐿𝑥𝑡 = 𝑥𝑡 − 1, for all 𝑡 ∈ ℤ.     (6) 

We should write (𝐿𝑥)𝑡 = 𝑥𝑡 − 1, with the meaning that, given a sequence 𝑥 = (𝑥𝑡)𝑡𝜖ℤ ∈ 𝑆 =, 

we introduce a new sequence 𝐿𝑥 ∈ 𝑆, that at time t is equal to the original sequence at time 

𝑡 − 1, hence the notation (𝐿𝑥)𝑡 = 𝑥𝑡 − 1. For shortness, we drop the bracket and write 𝐿𝑥𝑡 =

𝑥𝑡 − 1, but it is clear that 𝐿 operates on the full sequence 𝑥, not on the single value 𝑥𝑡.  

The time lag operator is a linear operator. The powers, positive and negative, of the lag operator 

are denoted by 𝐿𝑘: 

𝐿𝑘𝑥𝑡  =  𝑥𝑡−𝑘; for 𝑡 ∈ ℤ     (7) 

With this notation, the AR model reads 

(1 − ∑ 𝛼𝑘𝐿𝑘

𝑝

𝑘=1

) 𝑋𝑡 = 𝜀𝑡                                          (8) 

Moving Average (MA) Models.  

A MA (𝑞) (Moving Average with orders 𝑝 and 𝑞) model is an explicit formula for 𝑋𝑡 in terms 

of noise of the form 

𝑋𝑡  =  𝜀𝑡  +  𝛽1𝜀𝑡−1  + ⋯ + 𝛽𝑞𝜀𝑡−𝑞      (9) 

The process is given by a (weighted) average of the noise, but not an average from time zero 

to the present time 𝑡; instead, an average moving with t is taken, using only the last 𝑞 +  1 

times. Using time lags we can write 

(1 + ∑ 𝛽𝑘𝐿𝑘

𝑞

𝑘=1

) 𝜀𝑡.                                    (10) 
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Auto Regressive Moving Average (ARMA) Models.  

An ARMA (𝑝, 𝑞) (AutoRegressive Moving Average with orders 𝑝 and 𝑞) model is a discrete 

time linear equations with noise, of the form 

(1 − ∑ 𝛼𝑘𝐿𝑘

𝑝

𝑘=1

) 𝑋𝑡 = (1 + ∑ 𝛽𝑘𝐿𝑘

𝑞

𝑘=1

) 𝜀𝑡                         (11) 

or explicitly 

𝑋𝑡 = 𝛼1𝑋𝑡−1 + ⋯ + 𝛼𝑝𝑋𝑡−𝑝 + 𝜀𝑡 + 𝛽1𝜀𝑡−1  + ⋯ + 𝛽𝑞𝜀𝑡−𝑞 .   (12) 

We may incorporate a non-zero average in this model. If we want that 𝑋𝑡 has average 𝜇, the 

natural procedure is to have a zero-average solution 𝑍𝑡 of 

𝑍𝑡 = 𝛼1𝑍𝑡−1 + ⋯ + 𝛼𝑝𝑍𝑡−𝑝 + 𝜀𝑡 + 𝛽1𝜀𝑡−1  + ⋯ + 𝛽𝑞𝜀𝑡−𝑞 .   (13) 

and take 𝑋𝑡  =  𝑍𝑡  +  𝜇, hence solution of 

𝑋𝑡 = 𝛼1𝑋𝑡−1 + ⋯ + 𝛼𝑝𝑋𝑡−𝑝 + 𝜀𝑡 + 𝛽1𝜀𝑡−1  + ⋯ + 𝛽𝑞𝜀𝑡−𝑞 + �̅�  (14) 

with 

�̅� = 𝜇 − 𝛼1𝜇 − ⋯ − 𝛼𝑃𝜇.    (15) 

Autoregressive Integrated Moving Average (ARIMA) Models 

An ARIMA (𝑝, 𝑑, 𝑞) (AutoRegressive Integrated Moving Average with orders 𝑝, 𝑑, 𝑞) model 

is a discrete time linear equations with noise, of the form 

(1 − ∑ 𝛼𝑘𝐿𝑘

𝑝

𝑘=1

) (1 − 𝐿)𝑑𝑋𝑡 = (1 + ∑ 𝛽𝑘𝐿𝑘

𝑞

𝑘=1

) 𝜀𝑡.                (16) 

 

It is a particular case of ARMA models, but with a special structure. Set 𝑌𝑡 ≔ (1 − 𝐿)𝑑𝑋𝑡. 

Then 𝑌𝑡 is an ARMA (𝑝, 𝑞) model 

(1 − ∑ 𝛼𝑘𝐿𝑘

𝑝

𝑘=1

) 𝑌𝑡 = (1 + ∑ 𝛽𝑘𝐿𝑘

𝑞

𝑘=1

) 𝜀𝑡.                (17) 

and 𝑋𝑡 is obtained from 𝑌𝑡 by 𝑑 successive integrations. The number d is thus the order of 

integration. An example of this is the random walk is ARIMA(0,1,0). 

We may incorporate a non-zero average in the auxiliary process 𝑌𝑡 and consider the equation 
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(1 − ∑ 𝛼𝑘𝐿𝑘

𝑝

𝑘=1

) (1 − 𝐿)𝑑𝑋𝑡 = (1 + ∑ 𝛽𝑘𝐿𝑘

𝑞

𝑘=1

) 𝜀𝑡 + �̅�       (18) 

�̅� = 𝜇 − 𝛼1𝜇 − ⋯ − 𝛼𝑃𝜇. 

Seasonal Autoregressive Integrated Moving Average (SARIMA) Model 

SARIMA Model is an extension of ARIMA that explicitly supports univariate time series data 

with a seasonal component. It adds three new hyperparameters to specify the autoregression 

(AR), differencing (I) and moving average (MA) for the seasonal component of the series, as 

well as an additional parameter for the period of the seasonality. The SARIMA 

(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑆 model is expressed as follows: 

                  𝜙𝑝(𝐵)Φ𝑃(𝐵𝑆)(1 −  𝐵)𝑑 (1 −  𝐵𝑆)𝐷 𝑦𝑡  =  𝜃𝑞 (𝐵) Θ𝑄 (𝐵𝑆)𝜀𝑡           (19) 

(1 − ∑ 𝜙𝑖𝐵𝑖

𝑝

𝑖=1

) (1 − ∑ Φ𝑘𝐵𝑘𝑆

𝑝

𝑘=1

) 𝑧𝑡 = (1 − ∑ 𝜃𝑗𝐵𝑗

𝑞

𝑗=1

) (1 − ∑ Θ𝑙𝐵𝑙𝑆

𝑄

𝑙=1

) 𝜀𝑡                (20) 

Seasonal Autoregressive Integrated Moving Average with Exogenous Variables (SARIMAX) 

Model 

SARIMAX Models is a SARIMA model with Exogenous Variables (𝑋), called SARIMAX 

(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑆, where 𝑋 is the vector of exogenous variables. The exogenous variables can 

be modeled by a multiple linear regression equation which is expressed as follows: 

𝑦𝑡  =  𝛽0  +  𝛽1𝑋1,𝑡  + 𝛽2𝑋2,𝑡  + · · ·  +𝛽𝑘𝑋𝑘,𝑡   +  𝜔𝑡,       (21) 

where 𝛽0 is a constant parameter and 𝛽1, 𝛽2, . . . , 𝛽𝑘 are regression coefficient parameters of 

exogenous variables, 𝑋1,𝑡, 𝑋2,𝑡, . . . , 𝑋𝑘,𝑡 are observations of 𝑘 exogenous variables 

corresponding to the dependent variable 𝑦𝑡;  𝜔𝑡 is a stochastic residual; i.e., the residual series 

that is independent of input series. 

𝜔𝑡 =
𝜃𝑞 (𝐵) Θ𝑄 (𝐵𝑆)

𝜙𝑝(𝐵)Φ𝑃(𝐵𝑆)(1 −  𝐵)𝑑 (1 − 𝐵𝑆)𝐷
𝜀𝑡                  (22) 

The general SARIMAX model equation can be obtained by substituting Equation (21) into 

Equation (22). 

𝑦𝑡 = 𝛽0 + ∑ 𝛽𝑖𝑋𝑖,𝑡

𝑘

𝑖=1

+
𝜃𝑞 (𝐵) Θ𝑄 (𝐵𝑆)

𝜙𝑝(𝐵)Φ𝑃(𝐵𝑆)(1 −  𝐵)𝑑  (1 − 𝐵𝑆)𝐷
𝜀𝑡                  (23) 

Below are the key steps involved in constructing this model: 
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I. Log Mortality Transformation: The death rates were transformed into their 

logarithmic form to stabilize the variance in the data, a common practice when 

modeling mortality rates. 

II. Singular Value Decomposition (SVD): The SVD was applied to decompose the log-

transformed mortality data into three primary components: 𝑎𝑥, 𝑏𝑥 and 𝑘𝑡 t. The 

component 𝑎𝑥 represents the mean log mortality, which captures the average mortality 

across all ages. The component 𝑏𝑥, reflects the age-related deviations, indicating how 

mortality varies with age. Finally, 𝑘𝑡 represents the time-varying index that captures 

the trends in mortality over the years. Together, these components provide a detailed 

decomposition of mortality, accounting for both age and time variations. 

III. Time Series Forecasting: The time-dependent component 𝑘𝑡 is the key focus for future 

forecasting, and for this, the SARIMAX (Seasonal ARIMA with exogenous variables) 

model was utilized. Specifically, a SARIMAX (1,1,0)  ×  (0,1,1,12) model was 

chosen. This model specification includes a first-order autoregressive term, a 

differencing component to handle trends, and a seasonal component that addresses 

yearly cycles in mortality data. The SARIMAX model's ability to handle seasonality 

ensures that recurring patterns within the data, such as periodic changes in mortality 

rates, are captured, enhancing the overall predictive power of the model. 

IV. Prediction of Future Mortality: Once 𝑘𝑡 was forecasted using the SARIMAX model 

for the future years (2024-2100), the predicted values were combined with the 

previously estimated 𝑎𝑥 and 𝑏𝑥 to generate future mortality rates. This was done by 

first predicting the future log mortality as 𝑎𝑥  +  𝑏𝑥 ⋅ 𝑘𝑡  and then transforming the log 

mortality values back to their original scale using the exponential function. This 

provided the predicted death rates for the future, allowing for a more comprehensive 

view of mortality trends that accounts for both long-term shifts and seasonal 

fluctuations.  

3.3. Gradient Boosting Regression 

The Gradient Boost Regression algorithm starts by making an initial guess (prediction) which 

represents all the samples of the training dataset. The initial guess is equal to the mean value 

of all the samples of the dependent variable in the training dataset provided the loss function 

used is one-half mean squared error. This mean value is taken as a leaf node. The next step is 

to create a tree based on the errors made by the previous tree. The errors made by the previous 

tree are the differences between the actual values and the predicted values. These difference 

are also known as Pseudo Residuals. After the calculation of the pseudo residuals, a tree is built 

using the independent attributes of the dataset with any greedy approach like Gini index to 

predict the pseudo residuals instead of the actual values of the dependent variable. If the newly 

built tree contains a leaf which possesses more than one value then the output value of that 

particular leaf is the mean of those values provided that one-half mean squared error is taken 

as the loss function. After the creation of a new tree, all the previously built trees are combined 

with the new tree to form a single prediction model. Then the above mentioned procedure is 

iterated again to form a new tree based on the errors made by the previous prediction model 

until a certain number of trees are built or the creation of more number of trees no longer 
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improves the fitness of the model. Also to counter the variance in the model and for better 

prediction with a testing dataset, Gradient Boosting uses a leaning rate generally between 0 and 

1 to scale the contribution of any newly built tree after the first leaf node in the prediction 

model. 

The procedure for building this model was as follows: 

1. Initial Forecast with ARIMA: Similar to the first model, the death rates were first 

predicted using the ARIMA-forecasted  values in conjunction with the Lee-Carter 

model. 

2. Residual Calculation: The difference between the actual and predicted death rates, 

referred to as the residuals, was calculated. 

3. Residual Modeling with GBR: A Gradient Boosting Regressor was then trained on 

the residuals, using the year and APC as features, to capture the non-linear patterns 

missed by the initial ARIMA model. 

4. Results   

Descriptive Statistics   

Table 4.1 below provides the descriptive statistics of the dataset, summarizing the central 

tendencies and variability of the variables. The average death rate across all years is 

approximately 14.09, with a standard deviation of 6.59, indicating a moderate spread around 

the mean. The minimum observed death rate is 7.95, while the maximum is 30.70. Similarly, 

the annual percentage change (APC) shows a negative mean of -0.76, suggesting a general 

decrease in death rates over time. However, the variability of the APC is higher, with a standard 

deviation of 1.0 and a range from -2.8 to 0.78. 

Table 4.1: Descriptive Statistics of the Dataset  

Statistic Year 

Death 

Rate 

Annual 

Percentage 

Change (APC) 

Count 150 150 150 

Mean 2025.5 14.09 -0.76 

Std. Dev 43.45 6.59 1 

Min 1951 7.95 -2.8 

25th Percentile 1988.25 8.56 -1.51 

Median 2025.5 10.59 -0.95 

75th Percentile 2062.75 18.65 -0.06 

Max 2100 30.7 0.78 

Author's Computation, 2025   
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Lee-Carter Model with ARIMA 

The first predictive model applied was the traditional Lee-Carter model, which is frequently 

used in mortality forecasting. This model was enhanced with ARIMA for forecasting future 

mortality rates.  

The future mortality rates were predicted by combining the forecasted 𝑘𝑡 with the previously 

calculated 𝑎𝑥  and  𝑏𝑥. Figure 4.1 below illustrates the performance of the Lee-Carter model 

with ARIMA. The blue line represents the actual death rates from the historical data (1952-

2023), while the red line shows the predicted death rates from 2024 onwards. 

 

The model accurately captures the overall trend in mortality but demonstrates significant 

deviation after the year 2060. The observed discrepancy indicates that the ARIMA model, 

although effective in short-term predictions, struggled to generalize well over an extended 

period. The mean squared error (MSE) of the final predictions using the Lee-Carter model was 

calculated as 5.31, suggesting a considerable margin of error. 

Lee-Carter Model with SARIMAX 

The second predictive model applied was an enhanced version of the traditional Lee-Carter 

model, which incorporates seasonal effects using SARIMAX. This allows for capturing both 

the long-term trend and the seasonality in mortality rates.  

Figure 4.2 illustrates the performance of the Lee-Carter model using the SARIMAX approach. 

The blue line represents the actual death rates derived from historical data (1952–2023), while 

the yellow line indicates the predicted death rates from 2024 onwards. 



  
 Lagos Journal of Banking, Finance & Economic Issues Vol. 6 No. 1 May 2025 

167 
 

Figure 4.1: Actual vs Predicted Death Rate using Lee-Carter with SARIMAX 

 

The SARIMAX model captures the overall declining trend in historical death rates, with a 

relatively good alignment between the actual and predicted rates up to around 2020. Beyond 

this point, the predicted death rates gradually begin to diverge from the actual data. Notably, 

after 2060, the divergence becomes more evident, as the model continues predicting a decline 

in death rates, while the actual data suggests fluctuations. 

While SARIMAX demonstrates a more consistent and smoother long-term projection 

compared to the ARIMA model, the discrepancy after 2060 highlights the model's difficulty in 

accounting for long-term variations and cyclical patterns in mortality. This limitation is further 

emphasized by the Mean Squared Error (MSE) of 10.23, indicating a higher margin of error 

compared to the ARIMA model, which had an MSE of 5.31. The larger MSE for SARIMAX 

suggests that despite offering better stability over time, it struggled with precise long-term 

forecasting. 

 Lee-Carter Model with Gradient Boosting Regressor 

To improve the long-term forecasting accuracy, we combined the Lee-Carter model with 

Gradient Boosting Regressor (GBR) for the residuals that the ARIMA model and SARIMAX 

model could not predict effectively. This hybrid approach aimed to address the shortcomings 

of the ARIMA model and SARIMAX model in capturing non-linearities over time. 
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Figure 4.2:   Actual vs Predicted Death Rate using Lee-Carter with GBR 

 

The inclusion of the GBR model dramatically improved the model's ability to generalize over 

a long-time horizon, particularly beyond the year 2060. The final predictions closely align with 

the actual death rate trend, as seen in the gradual convergence of the lines. The MSE of the 

hybrid model dropped significantly to 4.25e-6, reflecting the enhanced performance. Figure 

4.2 above shows the performance of the improved Lee-Carter model, where the predictions 

from the hybrid model (green line) are compared with the actual death rates (blue line). 

4.1. Model Performance Comparison 

The results of the two models reveal a clear distinction in their forecasting capabilities and the 

performance of these models was evaluated using the Mean Squared Error (MSE), which 

measures the average of the squared differences between the actual and predicted death rates. 

The table below summarizes the performance metrics of both models: 

The Mean Square Errors of The Three Lee-Carter Models 

Model MSE  

Lee-Carter with ARIMA 5.31  
Lee-Carter with SARIMAX 10.23  
Lee-Carter with GBR 4.25E-06  

Author's Computation, 2025   

A lower MSE value indicates better model performance, as it reflects a smaller error between 

the predicted and actual values proving the model's long-term predictive power by addressing 

the non-linear residuals. 
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 The ARIMA-based model achieved an MSE of 5.31. This model captures the time series 

nature of the data, relying on the autoregressive and moving average components to forecast 

future death rates. However, its relatively high MSE indicates that it struggles to account for 

some of the non-linear patterns in the data. 

Incorporating seasonal components into the model, the SARIMAX model yields an MSE of 

10.23, which is higher than that of the ARIMA model. The inclusion of seasonal autoregressive 

terms likely introduced more complexity without improving the predictive accuracy, leading 

to an overfit to the seasonal noise present in the data. 

The Lee-Carter Model with Gradient Boosting Regressor (GBR) model significantly 

outperformed the other two models with an exceptionally low MSE of 4.25e-06. The GBR 

leverages boosting techniques, which involve building multiple weak learners and combining 

them to form a strong learner, capturing the complex patterns in the data more effectively. The 

minimal error suggests that GBR excels at modeling non-linear relationships and produces 

highly accurate predictions for death rates. 

5. Findings and Conclusion 

In this study, the Lee-Carter model was employed to predict mortality rates from 1951 to 2100, 

with the period from 1952 to 2023 used for model training and the period from 2024 to 2100 

designated for validation. To account for time-related mortality trends, the mortality data were 

transformed into a log format and decomposed using singular value decomposition (SVD), 

leading to the estimation of key components such as , and . These components represent the 

age-related mortality pattern and the time-varying trend, which were further forecasted using 

three different models: ARIMA, SARIMAX, and GBR. 

The historical mortality data for Nigeria shows great variation in level of mortality amongst 

regions, ages and social classes. The general trend is that more people die in rural than urban 

areas as a result of poor health care accessibility, economic conditions and other aspects. The 

pace of mortality has been higher in the northern region of Nigeria as a result of poverty, war, 

and poor healthcare. Mortality rates rise and fall with age. Babies and the old aged societal 

members experience higher rates of death than the middle aged demographic. Factors such as 

social class also determine mortality. Those on the lower social class have more deaths than 

those on higher social classes due to less access to health care, education and even essential 

facilities. 

The Lee-Carter model, which is particularly useful for forecasting mortality rates, while 

applied to the mortality data of Nigeria, required modifications to suit the peculiarities of the 

country’s demographic data and socio-economic characteristics. However, the model was 

modified to account for Nigeria’s rural-urban relations, age differentials and socioeconomic 

characteristics. In the calibration of the model, the parameters were adjusted to suit the 

particular mortality trends existing in Nigeria, where there are variations such as among 

different age groups and different geographical locations. These changes made it easier to 
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forecast the mortality patterns because the model was able to accommodate the diversity of the 

population in Nigeria. 

The influencing factors that have been identified by the authors have an overall indication of 

the reduction of mortality rates over time especially in urban areas where healthcare as well as 

socioeconomic factors do improve. However, the pattern must change for low income groups 

as well lower regions where healthcare is inadequate the pattern must be unfavourable. Age-

specific death rates among children below age five and preschoolers will continue to gradually 

improve as these public health trends will continue while within the aging population, age 

specific death rates will increase because of increased non-communicable disease burden and 

an increase in life span. The calibrated Lee-Carter model also suggests prospects for the 

equalization of loss of life in regions and social-economic stratifications but only on condition 

of political will. 

The mortality projections have important consequences for the policy environment in Nigeria. 

In terms of health service delivery planning, the results, in this case, show the need for more 

resources to be directed towards improving health facilities in most rural regions and the 

provision of specific strategies to meet the needs of the high mortality regions. Health care 

expenditures should seek to narrow the rural-urban divide as well as resolve the socio-

economic conditions that lead to increased death. Life insurers employ the mortality projections 

towards the re-calibration of life insurance rates and set reserves as the products offered today 

are postulated for future mortality trends. Social security programs including pensions will also 

need to be revised in the light of increasing life expectancy, especially amongst the elderly in 

such systems to be effective. The findings of this study underscore the effectiveness of the Lee-

Carter model for mortality forecasting when integrated with different predictive techniques. 

While both ARIMA and SARIMAX provided reasonable predictions, their performances were 

overshadowed by the superior accuracy of the Gradient Boosting Regressor. This outcome 

reveals that traditional time-series models, though valuable, may not capture the complexities 

inherent in long-term mortality trends as effectively as machine learning approaches. The 

significantly lower MSE achieved by the GBR model emphasizes the potential of machine 

learning in improving mortality forecasting accuracy. 

Moreover, this research highlights the importance of selecting the appropriate forecasting 

model for different types of data. The success of the GBR model suggests that machine learning 

models, which can manage non-linearity and incorporate feature interactions, can offer 

enhanced predictions compared to classical models. In public health and insurance industries, 

where accurate mortality predictions are crucial for policy planning and risk assessment, 

leveraging advanced models like GBR could lead to better decision-making and resource 

allocation. 
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