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Abstract 

This study examines the performance of various volatility models and distributional 

assumptions in modelling financial time series data from the Nigerian market. Specifically, the 

research evaluates the fit of different distributions, Normal, Student’s t, Generalized Error 

Distribution (GED), and Skew-t, within volatility models, including ARCH, GARCH, and 

EGARCH, to capture the time-varying volatility of nine selected securities. The performance 

of these models is assessed using three key performance metrics: Akaike Information Criterion 

(AIC), Bayesian Information Criterion (BIC), and log-likelihood. The results indicate that the 

EGARCH model with the t-distribution provides the best fit for most securities, outperforming 

the other models in terms of model selection criteria. While the EGARCH model with the Skew-

𝑡 distribution is slightly less effective, it still performs well in comparison to the other models. 

Overall, the findings highlight the superior ability of EGARCH with the t-distribution to model 

financial volatility in this context, making it the most robust model for forecasting and risk 

management in the Nigerian financial market. This study contributes to the growing literature 

on volatility modelling by providing empirical evidence on the effectiveness of different 

distributional assumptions in emerging markets. 

Keywords: Volatility Models, EGARCH, GARCH, ARCH, Distributional Assumptions 

1. Introduction 

Modelling financial time series presents a distinct challenge due to the non-linear and often 

erratic behaviour of asset returns, which frequently diverge from the assumptions underpinning 

classical financial models. Although the log-normal distribution has been widely used to 

describe asset price behaviour, empirical evidence increasingly suggests that it fails to capture 

the heavy tails and asymmetries present in real-world financial data. This has led to a growing 

interest in alternative distributions, such as the logistic and generalized logistic, which offer 

greater flexibility in capturing the observed extremes and tail behaviour in returns. Studies by 

Gray and French (2008), Nidhin and Chandran (2013), and more recently, Ahmad (2018) and 

An and Duah (2017), support the adoption of these distributions as more suitable for 

representing the statistical properties of financial indices. As such, there is a compelling 

rationale to revisit the distributional foundations of volatility models. 

Standard linear models, such as ARIMA, have traditionally been used in forecasting financial 

data; however, these models assume homoscedasticity, which is often violated in financial time 

series. The introduction of the Autoregressive Conditional Heteroskedasticity (ARCH) model 

by Engle (1982) addressed this limitation by allowing the conditional variance to evolve based 
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on past forecast errors. This innovation enabled the modelling of volatility clustering, a 

prominent feature of financial returns, thus paving the way for more sophisticated volatility 

modelling techniques. 

Building on this foundation, Bollerslev (1986) proposed the Generalized ARCH (GARCH) 

model, which incorporated lagged conditional variances in addition to lagged squared 

residuals, providing a more comprehensive approach to modelling volatility persistence. To 

further refine this framework, extensions such as the EGARCH and TGARCH models were 

introduced to capture asymmetries and leverage effects inherent in financial markets. The 

EGARCH model, for instance, proposed by Nelson (1991), allows for the modelling of 

asymmetric volatility responses to positive and negative shocks, a critical feature for realistic 

financial modelling. 

Recent literature has further highlighted the utility of GARCH-type models in analysing 

financial volatility across diverse market environments. Marisetty (2024), in a longitudinal 

study of five major global indices, demonstrated the efficacy of GARCH(1,1) and its variants 

in capturing market-specific volatility behaviours, particularly during periods of economic 

disruption such as the COVID-19 pandemic. Similarly, the comparative study by Agunobi, 

Pam, and Dauda (2024) revealed that the volatility dynamics of developed and emerging 

markets, such as the UK and Nigeria respectively, differ significantly, emphasizing the need 

for market-specific modelling approaches. These studies reinforce the relevance of GARCH 

frameworks for both theoretical and applied financial research. 

However, while much attention has been given to the structure of GARCH models, the role of 

the assumed error distribution remains underexplored, particularly in emerging markets. 

Financial return series often exhibit skewness and kurtosis that deviate significantly from the 

normal distribution, which can result in misestimation of volatility and risk. To better 

accommodate these characteristics, researchers have increasingly adopted alternative 

distributions, such as the Student’s t, Generalized Error Distribution (GED), and Skewed t, 

which better account for heavy tails and asymmetry. Despite this, there remains limited 

empirical consensus on which distribution offers the best performance within GARCH-type 

models, especially in markets like Nigeria where structural shifts and exogenous shocks are 

common. 

Although numerous studies have explored the application of GARCH-type models in financial 

volatility modelling, limited empirical evidence exists regarding the comparative performance 

of different distributional assumptions within these models, particularly in the context of 

emerging markets such as Nigeria. Traditional reliance on the normal distribution often leads 

to underestimation of risk and poor volatility forecasting due to its inability to capture skewness 

and heavy tails in return series. There is, therefore, a need to investigate which assumed error 

distribution provides the most accurate and reliable volatility estimates when applied within 

GARCH-type frameworks across different asset classes in the Nigerian financial market. 

The primary objective of this study is to evaluate and compare the performance of different 

assumed error distributions, specifically the Normal, Student’s t, Generalized Error 

Distribution (GED), and Skewed t, within GARCH-type models, in order to determine which 
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distribution best models, the conditional variance of financial returns in the Nigerian financial 

market. 

2. Literature Review 

Recent empirical literature has increasingly emphasized the limitations of traditional normality 

assumptions in financial return modelling, particularly in the presence of extreme market 

movements. In this context, the logistic and generalized logistic distributions have gained 

attention for their ability to capture heavy-tailed behaviour and extreme return events more 

effectively than the normal or log-normal distributions. 

Several studies have demonstrated the empirical superiority of the logistic distribution over the 

normal distribution in modelling financial returns, particularly due to its heavier tails, which 

better accommodate the observed frequency of extreme values in return series. Gray and 

French (2008), as well as Nidhin and Chandran (2013), show that the logistic distribution offers 

a significantly improved fit for empirical option prices compared to the traditional Black-

Scholes model, which assumes lognormality. Their findings highlight the potential benefits of 

incorporating non-Gaussian distributions in financial modelling, particularly when modelling 

asset price behaviour under volatile conditions. 

Expanding on this, the generalized logistic distribution has been applied to capture the 

distributional characteristics of extreme market returns. Ahmad (2018) and An and Duah 

(2017) provide compelling evidence that the generalized logistic distribution can more 

accurately model the fat tails present in the return distributions of major indices, such as the 

Nikkei 225. These studies underscore the inadequacy of conventional models in capturing 

extreme risk events and support the adoption of more flexible distributional assumptions in 

financial econometrics. 

In terms of volatility modelling, substantial research has examined the performance of various 

GARCH-type models in capturing time-varying volatility and asymmetric behaviours in 

financial returns. Marisetty (2024) conducted an extensive study analysing the volatility 

dynamics of five major global stock indices over a ten-year period using GARCH(1,1), 

EGARCH, and TGARCH models. The study particularly focused on the impact of global 

economic shocks, such as the COVID-19 pandemic, on market volatility. Results indicated 

significant cross-market heterogeneity, with emerging markets exhibiting more persistent 

volatility clustering than their developed counterparts. This underscores the importance of 

accounting for market-specific characteristics in volatility modelling. 

Similarly, Setiawan et al. (2020) conducted a comparative analysis of EGARCH, TGARCH, 

and APARCH models to evaluate their forecasting accuracy in modelling stock return volatility. 

Their findings highlighted the critical role of asymmetric volatility and leverage effects, with 

the APARCH model emerging as the most robust in terms of predictive performance. This 

reinforces the growing consensus in the literature that symmetric models often fail to capture 

key stylized facts of financial returns, particularly in the presence of negative shocks. 

Within the context of emerging markets, particularly Nigeria, empirical studies have validated 

the applicability and accuracy of asymmetric GARCH models. Ekong and Onye (2017) 
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examined stock return volatility in the Nigerian stock market and concluded that the 

GARCH(1,1) and EGARCH(1,1) models with Generalized Error Distribution (GED) provided 

superior predictive accuracy. Their findings align with the broader literature, which suggests 

that financial markets in developing economies tend to exhibit heightened volatility persistence 

and clustering. Complementing this, Kuhe (2018) explored the role of structural breaks and 

exogenous shocks in the Nigerian equity market. The study found that incorporating such 

structural elements into volatility models significantly reduced the persistence of volatility and 

improved forecasting reliability. 

Collectively, these studies emphasize the importance of using flexible volatility models and 

alternative distributional assumptions when analysing financial returns, particularly in the 

context of emerging markets. The evidence supports a paradigm shift away from conventional 

models toward approaches that better reflect empirical realities such as asymmetry, heavy tails, 

and regime shifts. 

3. Material and Method 

All computations are done on Jupyter Notebook using python programming language. 

3.1 Data 

The data that have been used were downloaded from Bloomberg. Financial instruments are 

chosen to cover different parts of the market (Table 1). The datasets are divided into three 

groups: index, currencies and stock/equity. Equities have been selected to represent some of 

Nigeria’s largest companies. 

Table 1: Security Information 

 Security Description 

Index 

NGSEBNK10 Banking Index 

NGSEINS10 Insurance Index 

NGSEOilG5 Oil & Gas Index 

Currencies 

USDNGN Exchange rate between USD and NGN 

GBPNGN Exchange rate between GBP and NGN 

EURNGN Exchange rate between EUR and NGN 

Stock 

DANGCEM Dangote Cement Plc 

GTCO Guaranty Trust Holding Company Plc 

MTNN MTN Nigeria Communications Plc 

Source: Bloomberg 

Each model is estimated using the adjusted closing price for each trading day for each security. 

The data used in the estimates are from January 2021 up to December 2024 for each dataset. 

3.2 GARCH-type Models 

The ARCH(q) model is defined as 

  𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2𝑞
𝑖=1        (1) 

where 𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝑖 = 1,2,3, … , 𝑞,  the series is stationary if 𝛼𝑖 < 1. The ARCH model 

creates a process where today’s variance depends on its own previous variance. This allows the 
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model to capture the volatility clustering observed in financial markets. The 𝛼𝑖 parameter 

explains how fast the model reacts to news on the market. The one step ahead forecast for the 

ARCH(1) model is done by using the equation, 

𝜎𝑡+1
2 = 𝛼0 + 𝛼1𝜀𝑡

2        (2) 

The GARCH(p,q) model adds a moving average term, making it similar to a regular 

ARMA(p,q) process. This allows a slower decay in variance from random shocks which is 

more coherent with observed data (Teräsvirta, 2009). The definition of the GARCH(p,q) model 

is 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2𝑞
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑝
𝑗=1      (3) 

where 𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝑖 = 1,2,3, … , 𝑞, 𝛽𝑗 ≥ 0, 𝑗 = 1,2,3, … , 𝑝. The process will be stationary 

if 𝛼 + 𝛽 < 1. If the stationarity condition is fulfilled the conditional variance will converge 

towards the unconditional variance 
𝛼0

1−(𝛼1+𝛽1)
 . The 𝛼𝑖 parameter again explains how fast the 

model reacts to news on the market while 𝛽𝑗 states how persistent the conditional 

heteroscedasticity is over time. If the 𝛽𝑗 parameter is large, effects from economic news in the 

market will have a tendency to linger. The GARCH(1,1) is the most used model specification, 

often used as a benchmark model within this area. The one step ahead forecast for the 

GARCH(1,1) model is done by using the equation, 

𝜎𝑡+1
2 = 𝛼0 + 𝛼1𝜀𝑡

2 + 𝛽1𝜎𝑡
2       (4) 

The EGARCH(p,q) model captures the asymmetric effect on variance from positive and 

negative news (Nelson, 1991). From empirical data the market volatility seem to react 

differently depending on the sign of the shocks, negative shocks usually results in periods of 

higher volatility compared to positive news (Nelson, 1991). By including a third parameter the 

EGARCH allows the model to react differently depending on the different type of news. The 

EGARCH model is defined as 

ln(𝜎𝑡
2) = 𝛼0 + ∑ 𝛼𝑖(|𝑧𝑡−𝑖| − 𝐸(|𝑧|))𝑞

𝑖=1 + ∑ 𝛽𝑗 ln(𝜎𝑡−𝑗
2 )𝑝

𝑗=1 + ∑ 𝛾𝑖𝑧𝑡−𝑖
𝑞
𝑖=1   (5) 

where 𝑧𝑡−1 =
𝜀𝑡−1

𝜎𝑡−1
 and 𝐸(|𝑧|) will depend on the assumed distribution, for a normal distribution 

𝐸(|𝑧|) = √
2

𝜋
. If (|𝑧𝑡−1| − 𝐸(|𝑧|)) < 0  the market is returning less than expected, clearly a 

negative shock. If the estimation shows that 𝛾𝑖 = 0 it implies that the model is symmetric. 

However, if the estimation shows that 𝛾𝑖 < 0, it will imply that negative news cause a higher 

future volatility than a positive, hence the model is asymmetric. The EGARCH model differs 

from the ARCH and GARCH models because the logarithm of the variance is what is being 

estimated. By taking the logarithm of the conditional variance it ensures a positive value. The 

logarithm also relaxes the parameters constraint; they no longer need to be positive. 𝛼𝑖 and 𝛽𝑗 

are still expected to have positive values. It is troublesome for inference and forecasting if they 

are negative. The 𝛾1 however is expected to have a negative value, which means that a negative 
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shock in the market will increase the future volatility. The EGARCH model is stationary if 𝛽 <

1. The one step ahead forecast for the EGARCH(1,1) model is done by using the equation, 

ln(𝜎𝑡+1
2 ) = 𝛼0 + 𝛼1(|𝑧𝑡| − 𝐸(|𝑧|)) + 𝛽1ln(𝜀𝑡

2) + 𝛾1𝑧𝑡   (6) 

3.3 Performance Metrics 

The performance of the fitted models is evaluated using a set of well-established statistical 

criteria, namely: Akaike Information Criterion (AIC), Bayesian Information Criterion (SBIC), 

and the Log-Likelihood (LL). These metrics, defined in Equations (11) to (14), provide a 

rigorous framework for assessing the trade-off between model fit and complexity, which is 

essential for robust model selection in time series analysis. 

The Akaike Information Criterion (AIC) is a widely adopted model selection tool that evaluates 

the goodness of fit while penalizing excessive model complexity. AIC is particularly useful for 

comparing non-nested models and is defined as: 

𝐴𝐼𝐶 = −2ℒ(𝜃) + 2𝑘        (7) 

where 𝐿(𝜃) is the log-likelihood of the model, and 𝑘 is the number of estimated parameters. 

Among competing models, the one with the lowest AIC value is preferred, as it is presumed to 

offer the best compromise between explanatory power and parsimony. 

The Bayesian Information Criterion (BIC), also referred to as the Bayesian Information 

Criterion (BIC), imposes a stricter penalty on model complexity than AIC, making it a more 

conservative criterion, especially useful in large-sample contexts or when overfitting is a 

concern. It is defined as: 

𝑆𝐵𝐼𝐶 = −2ℒ(𝜃) + 𝑘ln(𝑛)       (8) 

where 𝑛 denotes the sample size. Similar to AIC, a lower BIC value indicates a better-fitting 

model, though the heavier penalty on complexity often favours more parsimonious models. 

The Log-Likelihood (LL) function measures the probability of observing the given sample 

under the specified model. For GARCH-type models, it is derived from the conditional 

variance and residuals, as shown below: 

ℒ(𝜃) = −
𝑛

2
𝑙𝑜𝑔(2𝜋) −

1

2
∑ log(ℎ𝑡)
𝑛
𝑡=1 −

1

2
∑

𝑒𝑡
2

ℎ𝑡

𝑛
𝑡=1     (9) 

Where: 

ℒ(𝜃) is the log-likelihood; 

𝑛 the number of observations; 

ℎ𝑡 is the conditional variance at time 𝑡 (calculated from the GARCH model). 

𝑒𝑡 is the residual at time 𝑡 

𝜃 are the parameters of the GARCH model. 
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These criteria collectively provide a comprehensive basis for comparing alternative model 

specifications. While a higher log-likelihood implies a better fit, information criteria like AIC, 

SBIC, and HQIC adjust for model complexity, discouraging overfitting. When used in 

conjunction, these metrics enable the selection of models that are both statistically sound and 

practically applicable for forecasting and inference in financial time series. 

4. Result and Discussion 

4.1 Descriptive statistics 

The table below display the summary statistics of the price of nine (9) securities. 

Table 2: Price Summary for the Nine Securities 

Security Mean Std Min Max Skewness Kurtosis 

NGSEBNK10 572.97 227.56 336.46 1105.61 0.78 -0.93 

NGSEINS10 257.65 103.21 150.60 718.00 1.23 0.87 

NGSEOilG5 802.74 583.64 226.35 2715.72 1.48 1.54 

USDNGN 735.38 460.48 380.55 1681.39 1.08 -0.53 

GBPNGN 940.98 588.73 465.91 2232.18 1.11 -0.43 

EURNGN 769.28 475.18 412.17 1863.16 1.27 -0.05 

DANGCEM 349.84 150.53 204.00 763.00 1.35 0.42 

GTCO 32.07 9.65 16.85 58.75 0.66 -0.44 

MTNN 210.76 35.03 157.00 295.00 0.42 -0.80 

Source: Author’s Computation, 2025 

The price summary for the nine securities shown above indicate that the exchange rates and 

the oil and gas index are the most volatile. It reviewed that all assets exhibit positive skewness, 

implying a greater chance of large upward price movements. Also, it showed that most assets 

are either normally distributed or platykurtic, with a few showing signs of fat tails, suggesting 

the importance of using models that can accommodate asymmetry and non-normality in 

financial time series, such as GARCH-type models with non-normal error distributions. 

The figure below presents a comparative time-series analysis of price levels and returns for a 

selection of financial assets and exchange rates in Nigeria over the period January 2021 to 

December 2024. Each row comprises two subplots: the left panel illustrates the temporal 

evolution of asset prices, while the right panel depicts the corresponding daily returns, 

computed as the logarithmic differences in consecutive price levels. 

The exchange rate series (USD/NGN, GBP/NGN, and EUR/NGN) remain relatively stable 

until mid-2023, after which a sharp devaluation of the Nigerian naira is observed. This abrupt 

change aligns with a significant policy shift toward exchange rate liberalization. Prior to this 

devaluation, return volatility is notably subdued, but it escalates markedly in the post-

liberalization period, highlighting heightened exchange rate uncertainty and increased market 

sensitivity to macroeconomic developments.. 
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Figure 1: Line chart of price & return of the nine securities 

The Insurance Sector Index (NGSEINS10) and the Banking Sector Index (NGSEBNK10) 

exhibit relatively flat price trends until early 2023, followed by a notable upward trajectory 

from mid-2023 through 2024. This pattern likely reflects a structural regime shift, possibly 

driven by sectoral reforms or improving investor sentiment. Return volatility for both indices 

remains moderate, with episodic spikes coinciding with key inflection points in price dynamics. 

For the Oil and Gas Sector Index (NGSEOilG5), the analysis reveals a steady and consistent 

price increase throughout the observation period. This trend may indicate greater alignment 

with global energy market dynamics or ongoing reforms within the domestic energy sector. 

Return volatility is relatively contained, reinforcing the impression of sectoral stability. 
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A pronounced structural break is evident in the price of DANGCEM stock in early 2024, 

characterized by a rapid appreciation followed by a plateau. The corresponding return series 

displays heightened dispersion during this period, consistent with the presence of a price 

discontinuity. GTCO stock prices exhibit cyclical fluctuations, with a discernible upward trend 

beginning in 2023. This movement may reflect improved financial performance or 

strengthened investor confidence. Return spikes are sporadic but remain within a moderate 

volatility band. In contrast, MTNN exhibits more volatile price behaviour, with pronounced 

peaks and troughs particularly evident from mid-2022 onwards. The associated return series is 

more dispersed, suggesting a higher-risk profile relative to GTCO. 

Overall, the assets and exchange rates analysed display heterogeneous temporal dynamics. The 

exchange rate series demonstrate a structural break around mid-2023, reflective of a 

macroeconomic policy shift. Sector indices (NGSEINS10, NGSEBNK10, NGSEOilG5) 

experience gradual gains, whereas individual equities such as DANGCEM and MTNN exhibit 

more idiosyncratic and abrupt movements. The corresponding return plots highlight periods of 

volatility clustering, particularly during episodes of structural or policy-driven price 

adjustments. These findings are consistent with established financial market theories, 

particularly those relating to market efficiency, volatility transmission, and structural breaks in 

emerging economies. 

4.2 Presentation of Results 

Table 3: Stationarity test for various securities 

Security 
ADF Test – No differencing 

Statistic p-value 

NGSEBNK10 -8.7819 0.00000 

NGSEINS10 -6.5088 0.00000 

NGSEOilG5 -12.5186 0.00000 

USDNGN -6.9983 0.00000 

GBPNGN -6.8241 0.00000 

EURNGN -7.2154 0.00000 

DANGCEM -8.6277 0.00000 

GTCO -22.7115 0.00000 

MTNN -13.0585 0.00000 

Source: Author’s computation, 2025 

To test for stationarity, the Augmented Dickey-Fuller (ADF) test was done. For all the 

securities, the ADF test results strongly suggest that the null hypothesis of a unit root can be 

rejected at 1% significance level, as evidenced by the highly negative t-statistics and p-values 

of 0.0000. This indicates that the returns of these securities are stationary without requiring 

differencing, and they are well-suited for modelling and forecasting, as their statistical 

properties do not change over time. 

Table 4 summarizes the results of ARCH effect tests across various Nigerian financial 

securities. The F-statistics and corresponding p-values indicate whether each time series 

exhibits significant autoregressive conditional heteroskedasticity (ARCH effects). All NGSE-
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related assets (BNK10, INS10, OilG5, DANGCEM, GTCO, MTNN) show strong evidence of 

ARCH effects with very high F-statistics and p-values of 0.0000, indicating statistically 

significant volatility clustering. Among the currency series, USDNGN and GBPNGN also 

display significant ARCH effects (p-values < 0.05), while EURNGN has a borderline p-value 

of 0.0527, suggesting weak or marginal evidence. Overall, most of the series exhibit time-

varying volatility, justifying the use of ARCH or GARCH models for better modelling and 

forecasting. 

Table 4: ARCH Effects 

ARCH 

Effects 

NGSE 

BNK10 

NGSE 

INS10 

NGSE 

OilG5 USDNGN GBPNGN EURNGN DANGCEM GTCO MTNN 

F-statistic 85.0638 146.4021 270.5070 12.3839 12.0598 10.9344 118.0020 111.5971 54.8595 

p-value 0.0000 0.0000 0.0000 0.0299 0.0340 0.0527 0.0000 0.0000 0.0000 

Source: Author’s computation 

 

Table 5: Performance Metrics of Fitted Models for various Securities 

 Security Model Distribution LL AIC BIC 

 Banking 

ARCH 

Normal -1799.34 3604.67 3619.36 

 t -1637.24** 3282.47** 3302.06** 

 GED -1645.78 3299.56 3319.15 

 Skewt -1637.21** 3284.43** 3308.92** 

 

GARCH 

Normal -1734.97 3477.95 3497.54 

 t -1607.02 3224.03 3248.52 

 GED -1612.86 3235.72 3260.21 

 Skewt -1606.57** 3225.15** 3254.53** 

 

EGARCH 

Normal -1737.46 3484.92 3509.41 

 t -1604.51 3221.03 3250.41 

 GED -1612.34 3236.68 3266.07 

 Skewt -1604.35 3222.71 3256.99 

Insurance ARCH Normal -1831.26 3668.52 3683.21 

  t -1733.06 3474.12 3493.71 

  GED -1741.28 3490.56 3510.15 

  Skewt -1733.06 3476.12 3500.61 

 GARCH Normal -1727.29 3462.58 3482.17 

  t -1706.19 3422.39 3446.88 

  GED -1704.92 3419.85 3444.34 

  Skewt -1706.17 3424.33 3453.72 

 EGARCH Normal -1718.54 3447.07 3471.56 

  t -1695.97 3403.95 3433.33 

  GED -1696.38 3404.76 3434.15 

  Skewt -1695.94 3405.88 3440.16 

Oil&Gas ARCH Normal -1725.94 3457.87 3472.56 

  t -1194.42** 2396.83** 2416.42** 

  GED -1292.03 2592.05 2611.64 

  Skewt -1181.95** 2373.91** 2398.40** 

 GARCH Normal -1714.91 3437.82 3457.41 

  t -1188.16 2386.32 2410.81 

  GED -1280.77 2571.55 2596.04 

  Skewt -1173.17 2358.35 2387.73 

 EGARCH Normal -1670.38 3350.75 3375.24 

  t -1154.57 2321.14 2350.53 
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 Security Model Distribution LL AIC BIC 

  GED -1253.10 2518.19 2547.58 

  Skewt -1149.93 2313.87 2348.15 
C

u
rr

en
cy

 

USDNGN ARCH Normal -2189.90** 4385.80** 4400.65** 

  t 22.43* -36.85* -17.06* 

  GED -1001.96 2011.92** 2031.72** 

  Skewt 29.40* -48.81* -24.06* 

 GARCH Normal -2091.01** 4190.02** 4209.82** 

  t -2.21* 14.42* 39.17* 

  GED -424.06* 858.115* 858.87* 

  Skewt -35038.10 70088.10 70117.80 

 EGARCH Normal -2014.97 4039.94 4064.69 

  t 476.314* -940.628* -910.929* 

  GED -717.504 1447.01 1476.71 

  Skewt 545.240* -1076.48* -1041.83* 

GBPNGN ARCH Normal -2248.92** 4503.83** 4518.68** 

  t -1484.00** 2976.00** 2995.80** 

  GED -1622.88** 3253.76** 3273.56** 

  Skewt -1483.96** 2977.96** 3002.71** 

 GARCH Normal -2170.69 4349.37 4369.17 

  t -1408.43** 2826.85** 2851.60** 

  GED -1495.56 3001.12 3025.87 

  Skewt -1408.37** 2828.74** 2858.44** 

 EGARCH Normal -2099.30 4208.60 4233.35 

  t -1394.20 2800.41 2830.10 

  GED -1498.69 3009.38 3039.08 

  Skewt -1393.39 2800.78 2835.43 

EURNGN ARCH Normal -2465.15 4936.30 4951.50 

  t -1551.15** 3110.31** 3130.57** 

  GED -1705.08 3418.16 3438.42 

  Skewt -1550.90** 3111.79** 3137.13** 

 GARCH Normal -2355.43 4718.87 4739.14 

  t -1458.13 2926.26 2951.60 

  GED -1539.82 3089.65 3114.99 

  Skewt -1458.13 2928.26 2958.66 

 EGARCH Normal -949819* 0.0000* 0.0000* 

  t -1445.58 2903.16 2933.56 

  GED -1580.60 3173.20 3203.60 

  Skewt -1445.56 2905.11 2940.59 

S
to

ck
 

DANGCEM ARCH Normal -1982.19* 3970.39* 3985.08* 

  t 1735.40* -3462.80* -3443.21* 

  GED -1023.19 2054.37 2073.96 

  Skewt 463.494* -916.987* -892.499* 

 GARCH Normal -1976.30 3960.60 3980.19 

  t -1047.30 2104.60 2129.09 

  GED -1010.38 2030.76 2055.25 

  Skewt -1672.48 3356.97 3386.35 

 EGARCH Normal -1984.85 3979.69 4004.18 

  t 3007.86* -6003.71* -5974.32* 

  GED -1020.32 2052.63 2082.02 

  Skewt -3045.10 6104.19 6138.48 

GTCO ARCH Normal -2073.77 4153.54 4168.22 

  t -1842.90** 3693.80** 3713.37** 

  GED -1848.14 3704.28 3723.85 

  Skewt -1840.49** 3690.98** 3715.45** 

 GARCH Normal -2027.71 4063.42 4082.99 

  t -1818.80** 3647.59** 3672.06** 

  GED -1816.28 3642.55 3667.02 
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 Security Model Distribution LL AIC BIC 

  Skewt -1817.37** 3646.74** 3676.10** 

 EGARCH Normal -2026.66 4063.32 4087.79 

  t -1810.28 3632.56 3661.92 

  GED -1814.16 3640.32 3669.68 

  Skewt -1809.80 3633.60 3667.86 

MTNN ARCH Normal -2082.32 4170.64 4185.34 

  t -1113.82 2235.64 2255.23 

  GED -1476.32 2960.64 2980.23 

  Skewt -1113.53 2237.06 2261.55 

 GARCH Normal -2001.24 4010.48 4030.07 

  t -1034.18 2078.35 2102.84 

  GED -1402.39 2814.79 2839.28 

  Skewt -1034.17 2080.34 2109.72 

 EGARCH Normal -2022.82 4055.65 4080.14 

  t -6467.68 12947.40 12976.70 

  GED -1415.39 2842.79 2872.18 

  Skewt -1062.57 2139.14 2173.42 

AIC is Akaike Information Criterion, BIC – Bayesian Information Criterion, LL is Log Likelihood 

GED is Generalized Error Distribution, t is Students-t, Skewt is Skewstudent-t, 
* No convergence 

** Sum of parameters is >= 1.0 

 

The above table provides performance metrics for different GARCH-type models applied to 

various securities. The key metrics to evaluate the models are the Log-Likelihood (LL), the 

Akaike Information Criterion (AIC), and the Bayesian Information Criterion (BIC). 

The EGARCH (t) model has the lowest AIC indicating the best performance for the Banking 

index. GARCH (t) and EGARCH (Skew-t) models also performed well but slightly worse than 

EGARCH (t). For the Insurance Index, the EGARCH (t) model has the lowest AIC (3403.95), 

indicating the best performance for the index. EGARCH (GED) and EGARCH (Skew-t) 

models also performed well but slightly worse than EGARCH (t). For the Oil & Gas Index, the 

EGARCH (Skew-t) has the lowest AIC (2313.87) and BIC (2348.15), indicating it is the best-

performing model. GARCH (Skew-t) and EGARCH (t) also performed well. Since EGARCH 

allows for asymmetry in volatility, its superior performance suggests that volatility in the three 

(3) index reacts differently to positive and negative shocks. The preference for the t and Skew-

t distributions further accounts for heavy tails and skewness in return distributions, meaning 

large price movements are more common than a normal distribution would predict. 

The EGARCH (GED) provide the best fit for USD/NGN currency pair. ARCH (GED) also 

performed well but slightly worse than EGARCH (GED) for this pair. For GBP/NGN and 

EUR/NGN currency pairs, the EGARCH (t) model best fit the data, the EGARCH (Skew-t) 

also performed well but it was slightly worse than the EGARCH (t) for both pairs. Also, the 

GARCH (Skew-t) also performed well for EUR/NGN pair. Currency markets often exhibit 

extreme movements (jumps and crashes), making heavy-tailed distributions (t and Skew-t) 

better suited for modelling exchange rate volatility. 

The GARCH (GED) model has the lowest AIC & BIC and the largest log-likelihood indicating 

the best performance for the DANGCEM (Dangote Cement stock). ARCH (GED) and 

EGARCH (GED) models also performed well but slightly worse than GARCH (GED). For 
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GTCO, EGARCH (t) and EGARCH (Skew-t) are the best models with the students-t 

distribution slightly outperforming Skew-t distribution. Finally, the GARCH (t) distribution 

narrowly outperformed the GARCH (Skew-t) distribution as the best fit model with regards to 

the MTNN security leaving these two as the best models. The performance of Skew-t and t-

distributions implies that stock price returns are characterized by fat tails and occasional large 

deviations from the mean. The high performance of EGARCH (t) for GTCO suggest that the 

stock returns exhibit asymmetric volatility patterns. 

In addition, the performance metric table above highlighted that GARCH-type models with t-

distributions and Skew-t distributions consistently outperform those with Normal and GED 

distributions, confirming the presence of heavy tails in financial return data. EGARCH models 

mostly provide the best performance by outperforming GARCH and ARCH models, 

highlighting the importance of asymmetry in volatility modelling. GARCH models 

occasionally outperform ARCH models, especially in the stock market, suggesting that in some 

cases, volatility is more persistent rather than short-lived. 

Table 6: Parameter Estimates of ARCH Models with different Conditional Distributions 

Security 

ARCH - Normal ARCH - Student t ARCH - GED ARCH – Skewstudent 

t 

𝝎 𝜶𝟏 𝝎 𝜶𝟏 𝝎 𝜶𝟏 𝝎 𝜶𝟏 

NGSEBNK10 
Estimate 1.4645 0.6023 1.8003 1.0000 1.1587 0.6081 1.8071 1.0000 

Prob 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

NGSEINS10 
Estimate 1.5813 0.5467 1.5267 0.4808 1.5099 0.4767 1.5267 0.4817 

Prob 0.0000 0.0018 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

NGSEOilG5 
Estimate 1.7649 0.1109 3.5875 1.0000 0.7817 0.1294 4.7227 1.0000 

Prob 0.0000 0.0187 0.0312 0.0055 0.0000 0.0357 0.1330 0.0023 

USDNGN 
Estimate 3.0836 1.0000 0.0011 0.9999 0.2156 1.0000 0.0001 1.0000 

Prob 0.0939 0.4720 0.1110 0.0000 0.1030 0.0001 0.1280 0.0000 

GBPNGN 
Estimate 3.1955 1.0000 1.2142 1.0000 0.8354 1.0000 1.2157 1.0000 

Prob 0.1890 0.6950 0.0000 0.0000 0.0000 0.0018 0.0000 0.0000 

EURNGN 
Estimate 3.2252 0.6357 1.8843 1.0000 0.7864 0.7025 1.8936 1.0000 

Prob 0.0282 0.2510 0.0002 0.0000 0.0000 0.0089 0.0002 0.0000 

DANGCEM 
Estimate 2.8164 0.2644 0.0000 0.0009 0.4130 0.1737 0.0000 0.0002 

Prob 0.0000 0.0002 0.9990 0.8900 0.0000 0.0127 0.573 0.0214 

GTCO 
Estimate 3.1120 0.3224 3.7174 1.0000 1.9673 0.4341 3.7888 1.0000 

Prob 0.0000 0.0001 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 

MTNN 
Estimate 3.6280 0.1132 0.1801 0.6926 1.1564 0.0826 0.1809 0.6907 

Prob 0.0000 0.0358 0.7200 0.6680 0.0000 0.0413 0.7200 0.6680 

Source: Author’s Computation, 2025 

The estimation results from the ARCH models indicate significant variations in volatility 

persistence across different asset classes in the Nigerian financial market. Exchange rates, 

particularly USD/NGN, GBP/NGN, and EUR/NGN, exhibit high volatility persistence, as 

evidenced by α₁ estimates approaching unity across multiple model specifications. This finding 

is consistent with recent studies on exchange rate dynamics, which suggest that foreign 

exchange markets tend to exhibit long memory and persistent volatility due to macroeconomic 

shocks and speculative trading (Balcilar et al., 2023). In contrast, the sector indices, such as 

NGSEBNK10 and NGSEINS10, demonstrate moderate volatility persistence, with α₁ values 

ranging from 0.48 to 0.61, indicating a relatively faster mean-reverting process. The oil and 



Ajijola & jeje: a comparison of garch-type model for volatility modelling in three different 
sectors of markets 

128 
 

gas index (NGSEOilG5), however, exhibits stronger volatility persistence under Student’s t and 

Skewed Student’s t distributions, aligning with findings that energy sector volatility is highly 

sensitive to global crude oil price fluctuations (Bouri et al., 2022). 

Moreover, the choice of distributional assumptions significantly affects the estimated 

parameters, with Student’s t and Skewed Student’s t models generally yielding higher α₁ 

estimates than the Normal and GED specifications. This suggests that accounting for fat tails 

and skewness improves the model’s ability to capture extreme market movements, a key 

characteristic of financial time series data (Choudhry & Jayasekera, 2023). Notably, the 

volatility of individual stocks, such as GTCO and MTNN, varies across models, reflecting 

firm-specific risk factors and potential structural breaks in volatility dynamics (Nelson, 1991). 

Additionally, the statistical insignificance of the ARCH parameters for DANGCEM under 

certain model specifications suggests that alternative volatility models, such as the GARCH or 

EGARCH frameworks, may be more appropriate for capturing its return dynamics. These 

results underscore the importance of selecting appropriate distributional assumptions when 

modeling volatility in emerging markets, as misspecified models may underestimate or 

overestimate risk exposure, leading to suboptimal investment and risk management decisions. 

The parameter estimates from the ARCH models indicate varying levels of volatility 

persistence across different securities, with notable differences based on the assumed error 

distribution. Across models, the persistence parameter (𝛼₁) is close to or equal to 1 for most 

exchange rates (USD/NGN, GBP/NGN, EUR/NGN), suggesting strong volatility clustering, 

consistent with findings in emerging market volatility studies (Balcilar et al., 2023). For 

equities, estimates vary, with financial sector stocks like GTCO exhibiting moderate volatility 

persistence. The selection of distributions influences parameter stability, as highlighted in 

recent comparative studies of volatility forecasting models (Choudhry & Jayasekera, 2023). 

Table 7a: Parameter Estimates of GARCH Models with different Conditional Distributions 

Security 
GARCH - Normal GARCH - Student t 

𝝎 𝜶𝟏 𝜷 𝝎 𝜶𝟏 𝜷 

NGSEBNK10 
Estimate 0.1425 0.2359 0.7435 0.1357 0.2604 0.7396 

Prob 0.0578 0.0184 0.0000 0.0295 0.0007 0.0000 

NGSEINS10 
Estimate 0.2255 0.2450 0.6717 0.1788 0.1676 0.7532 

Prob 0.0210 0.0132 0.0192 0.1210 0.0380 0.0000 

NGSEOilG5 
Estimate 0.1929 0.0623 0.8418 0.3565 0.3290 0.6710 

Prob 0.0748 0.0829 0.0000 0.2930 0.0326 0.0342 

USDNGN 
Estimate 0.4555 0.2381 0.7619 0.0340 0.5682 0.4210 

Prob 0.3850 0.0448 0.0000 0.0000 0.0000 0.0000 

GBPNGN 
Estimate 0.5185 0.2689 0.7311 0.1243 0.3200 0.6800 

Prob 0.5340 0.3870 0.0000 0.0007 0.0000 0.0000 

EURNGN 
Estimate 0.2990 0.1377 0.8391 0.0528 0.0722 0.9278 

Prob 0.4640 0.1010 0.0000 0.0472 0.1580 0.0000 

DANGCEM 
Estimate 1.5157 0.1883 0.4068 0.0014 0.0973 0.6455 

Prob 0.0066 0.0020 0.0127 0.0658 0.707 0.0211 

GTCO 
Estimate 0.2265 0.1404 0.8225 0.5553 0.3864 0.6136 

Prob 0.0796 0.0159 0.0000 0.0822 0.0001 0.0000 

MTNN 
Estimate 0.1615 0.0781 0.8888 0.0002 0.5808 0.3680 

Prob 0.0602 0.0015 0.0000 0.8850 0.7450 0.0205 

Source: Author’s Computation, 2025 
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Table 7b: Parameter Estimates of GARCH Models with different Conditional Distributions 

Security GARCH - GED GARCH - Skewstudent t 

𝝎 𝜶𝟏 𝜷 𝝎 𝜶𝟏 𝜷 

NGSEBNK10 
Estimate 0.1147 0.2284 0.7419 0.1340 0.2560 0.7440 

Prob 0.0275 0.0045 0.0000 0.0306 0.0012 0.0000 

NGSEINS10 
Estimate 0.2205 0.2070 0.7010 0.1763 0.1655 0.7559 

Prob 0.1380 0.0442 0.0000 0.1180 0.0386 0.0000 

NGSEOilG5 
Estimate 0.0966 0.0470 0.8110 0.5148 0.1663 0.8337 

Prob 0.1050 0.0591 0.0000 0.8380 0.0079 0.0000 

USDNGN 
Estimate 0.0045 0.3151 0.6849 0.0047 0.4371 0.5589 

Prob 0.5220 0.1520 0.0000 0.8910 0.0000 0.0730 

GBPNGN 
Estimate 0.0653 0.2944 0.7056 0.1241 0.3181 0.6819 

Prob 0.1260 0.0061 0.0000 0.0008 0.0001 0.0000 

EURNGN 
Estimate 0.0261 0.0773 0.8831 0.0527 0.0720 0.9280 

Prob 0.4330 0.5760 0.0000 0.0462 0.1560 0.0000 

DANGCEM 
Estimate 0.2017 0.1011 0.3892 1.0693 0.2817 0.1348 

Prob 0.0691 0.0670 0.0899 0.0002 0.0066 0.4850 

GTCO 
Estimate 0.2171 0.1975 0.7324 0.5679 0.3821 0.6179 

Prob 0.0428 0.0038 0.0000 0.0630 0.0000 0.0000 

MTNN 
Estimate 0.0624 0.0562 0.8350 0.0002 0.5807 0.3681 

Prob 0.1160 0.0074 0.0000 0.8850 0.7450 0.0204 

Source: Author’s Computation, 2025 

The GARCH model estimates reveal significant differences in volatility persistence across 

various financial instruments, influenced by the choice of distributional assumptions. Across 

all models, the sum of 𝛼1 (short-term volatility impact) and 𝛽 (long-term persistence) is close 

to unity for most assets, indicating high volatility clustering, particularly in exchange rates such 

as USD/NGN and EUR/NGN, where 𝛽 exceeds 0.90 in certain specifications. This aligns with 

prior research suggesting that currency markets exhibit strong volatility persistence due to 

macroeconomic uncertainties (Balcilar et al., 2023). Sector indices like NGSEBNK10 and 

NGSEINS10 show moderate volatility persistence, with 𝛽 values ranging from 0.67 to 0.75, 

indicating that volatility shocks decay at a faster rate compared to exchange rates. Notably, oil 

and gas sector volatility (NGSEOilG5) exhibits lower 𝛼1 estimates under some models, 

suggesting that external shocks may have less immediate impact but linger over time, 

consistent with studies on commodity-linked equities (Bouri et al., 2022). Additionally, the 

choice of distribution significantly affects parameter estimates; for instance, under the 

Student’s t and Skewed Student’s t distributions, equity volatility persistence tends to be higher, 

reflecting the ability of these distributions to capture heavy-tailed return characteristics 

(Choudhry & Jayasekera, 2023). These findings emphasize the necessity of selecting 

appropriate distributional assumptions when modelling volatility to ensure accurate risk 

assessment and forecasting in emerging markets. 

Table 8a: Parameter Estimates of EGARCH Models with different Conditional Distributions 

Security 
EGARCH - Normal EGARCH - Student t 

𝝎 𝜶𝟏 𝜸 𝜷 𝝎 𝜶𝟏 𝜸 𝜷 

NGSEBNK10 
Estimate 0.1273 0.4618 0.0497 0.8962 0.1574 0.5265 -0.0020 0.9207 

Prob 0.0340 0.0001 0.2380 0.0000 0.0394 0.0002 0.9580 0.0000 

NGSEINS10 Estimate 0.0440 0.2389 0.1109 0.9448 0.0314 0.1659 0.0960 0.9591 
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Prob 0.0239 0.0027 0.0007 0.0000 0.0165 0.0017 0.0000 0.0000 

NGSEOilG5 
Estimate 0.0538 0.0336 0.1590 0.9003 0.3142 0.4926 0.1135 0.9513 

Prob 0.0199 0.4710 0.0002 0.0000 0.5030 0.2980 0.4940 0.0000 

USDNGN 
Estimate 0.0659 0.0658 -0.0451 0.9809 0.2036 0.7946 0.4685 0.9681 

Prob 0.1940 0.0795 0.2990 0.0000 0.0134 0.0000 0.0000 0.0000 

GBPNGN 
Estimate 0.6428 1.2986 0.4178 0.8372 0.0693 0.2281 -0.1274 0.9808 

Prob 0.1180 0.0094 0.2140 0.0000 0.1280 0.0024 0.0129 0.0000 

EURNGN 
Estimate -0.0047 -0.0121 0.0301 0.9978 0.1355 0.2503 -0.0978 0.9835 

Prob 0.0029 0.0415 0.0214 0.0000 0.2320 0.0825 0.2380 0.0000 

DANGCEM 
Estimate 0.6482 0.3552 0.0531 0.5895 -7.8232 0.0784 0.0775 0.4733 

Prob 0.0154 0.0000 0.2680 0.0017 0.0000 0.0000 0.0000 0.0000 

GTCO 
Estimate 0.1537 0.3105 0.0269 0.9223 1.5891 1.8221 0.1969 0.8508 

Prob 0.0224 0.0010 0.4430 0.0000 0.3630 0.3180 0.4310 0.0000 

MTNN 
Estimate 0.1459 0.1967 -0.0162 0.9398 3.2824 -38.5362 14.0125 1.0000 

Prob 0.0073 0.0013 0.6470 0.0000 0.9730 0.9980 0.9850 0.9980 

Source: Author’s Computation, 2025 

Table 8b: Parameter Estimates of EGARCH Models with different Conditional Distributions 

Security 
EGARCH - GED EGARCH - Skewstudent t 

𝝎 𝜶𝟏 𝜸 𝜷 𝝎 𝜶𝟏 𝜸 𝜷 

NGSEBNK10 
Estimate 0.0929 0.4696 0.0176 0.9064 0.1540 0.5200 -0.0029 0.9211 

Prob 0.0478 0.0006 0.8150 0.0000 0.0410 0.0003 0.9390 0.0000 

NGSEINS10 
Estimate 0.0369 0.1915 0.1025 0.9528 0.0314 0.1666 0.0967 0.9589 

Prob 0.0207 0.0019 0.0000 0.0000 0.0169 0.0016 0.0000 0.0000 

NGSEOilG5 
Estimate -0.0355 0.0890 0.1123 0.9009 0.2972 0.4364 0.1070 0.9458 

Prob 0.1530 0.0241 0.0103 0.0000 0.5340 0.3420 0.5010 0.0000 

USDNGN 
Estimate -0.0283 0.0710 -0.0489 0.9887 0.4675 1.2324 0.3706 0.9900 

Prob 0.5280 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

GBPNGN 
Estimate 0.0218 0.1345 -0.0614 0.9873 0.0784 0.2400 -0.1350 0.9792 

Prob 0.1120 0.0176 0.1520 0.0176 0.1400 0.0040 0.0157 0.0176 

EURNGN 
Estimate 0.0476 0.4327 -0.0380 0.8953 0.1369 0.2522 -0.0990 0.9834 

Prob 0.0825 0.0000 0.4050 0.0000 0.2350 0.0856 0.2410 0.0000 

DANGCEM 
Estimate -0.1585 0.2196 0.0441 0.7163 10.4386 16.1716 -24.6011 0.9440 

Prob 0.2250 0.0040 0.1870 0.0004 0.0293 0.0145 0.0000 0.0000 

GTCO 
Estimate 0.1424 0.4019 0.0379 0.8900 1.5901 1.8055 0.2018 0.8485 

Prob 0.0067 0.0000 0.0263 0.0000 0.4410 0.3990 0.4780 0.0000 

MTNN 
Estimate 0.0331 0.1975 -0.0061 0.9252 -0.1433 0.2652 0.0290 0.9521 

Prob 0.1060 0.0000 0.8180 0.0000 0.7200 0.4160 0.4950 0.0000 

Source: Author’s Computation, 2025 

The EGARCH model estimates provide key insights into the asymmetric nature of volatility 

across various financial instruments. Across all specifications, the persistence parameter (𝛽) is 

consistently close to one, indicating strong volatility clustering in the time series, particularly 

for currency pairs such as USD/NGN and EUR/NGN, where 𝛽 exceeds 0.98. This supports 

prior findings that exchange rates exhibit long memory in volatility due to macroeconomic and 

geopolitical uncertainties (Balcilar et al., 2023). The leverage effect parameter (𝛾) varies across 

assets, suggesting differential responses to positive and negative shocks. For instance, 

NGSEINS10 and NGSEOilG5 exhibit significant positive 𝛾 values under most distributions, 

implying that positive shocks increase volatility more than negative shocks, which is consistent 

with evidence from sectoral equity markets (Choudhry & Jayasekera, 2023). Conversely, some 
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assets, such as GBPNGN and EURNGN, show negative or insignificant 𝛾 values, indicating 

that negative shocks may not necessarily amplify volatility, potentially due to market 

interventions or structural factors (Bouri et al., 2022). The choice of distribution plays a crucial 

role in the model’s performance, under the Student's t and Skewed Student’s t distributions, the 

𝛼1 parameter (capturing the immediate impact of shocks) is generally higher, reflecting the 

ability of these distributions to better capture the heavy-tailed nature of financial returns. 

Notably, the DANGCEM stock exhibits extreme parameter instability in the Skewed Student’s 

t distribution, suggesting that this distribution may not be well-suited for modelling its volatility 

dynamics. These findings emphasize the importance of accounting for asymmetry and 

distributional choices when modelling volatility in emerging market assets. 

5. Conclusion 

This study presents a comprehensive analysis of volatility dynamics across various financial 

instruments in the Nigerian market, utilizing ARCH and GARCH-type models with alternative 

distributional assumptions. The empirical results consistently demonstrate that models 

incorporating asymmetry, particularly the EGARCH framework, and heavy-tailed distributions 

such as the Student's t and Skewed t, provide superior performance across multiple asset 

classes. The persistent outperformance of EGARCH models underscores the importance of 

accounting for asymmetric responses to market shocks, a characteristic prevalent in financial 

markets where negative and positive shocks exert unequal effects on volatility. 

The analysis reveals notable differences in volatility persistence across asset classes. Exchange 

rate series such as USD/NGN, GBP/NGN, and EUR/NGN exhibit high levels of volatility 

clustering, with persistence parameters nearing unity, aligning with evidence that currency 

markets are prone to prolonged volatility due to macroeconomic and geopolitical uncertainties 

(Balcilar et al., 2023). In contrast, sectoral indices, particularly NGSEBNK10 and 

NGSEINS10, show moderate volatility persistence and a more rapid decay of shocks, 

indicative of a relatively mean-reverting process. The oil and gas sector index (NGSEOilG5) 

demonstrates stronger persistence under heavy-tailed distributions, consistent with the sector's 

sensitivity to global energy price shocks (Bouri et al., 2022). 

Further, the leverage effect captured by the EGARCH model highlights heterogeneity in how 

different assets respond to shocks. Significant positive asymmetry in certain sectors, such as 

insurance and oil and gas, suggests that positive returns may exacerbate volatility more than 

negative ones, a finding consistent with sector-specific investor behaviours and structural 

dynamics (Choudhry & Jayasekera, 2023). Conversely, some currency pairs display minimal 

or negative asymmetry, potentially reflecting regulatory interventions or stabilizing 

mechanisms in the forex market. 

From a methodological standpoint, the findings emphasize the critical role of selecting 

appropriate distributional assumptions. The superior performance of models using Student’s t 

and Skewed t distributions confirms the prevalence of fat tails and non-normal return 

distributions in financial data. Moreover, the underperformance and instability of certain 

models, such as the Skewed Student’s 𝑡 for DANGCEM, underscore the need for asset-specific 

model calibration to avoid misestimation of risk. 
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In conclusion, this study affirms that volatility modelling in emerging markets benefits 

significantly from flexible model structures that incorporate asymmetry and accommodate 

distributional flexibility. These findings carry important implications for risk management, 

portfolio optimization, and policy formulation, as accurate volatility forecasts are essential for 

navigating the complexities of financial markets in developing economies. 
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